Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.424
Filtrar
1.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509561

RESUMO

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Assuntos
Cálcio , Transtornos Mieloproliferativos , Humanos , Fura-2 , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transdução de Sinais , Mutação , Receptores da Eritropoetina/genética , Janus Quinase 2/genética
2.
J Neuromuscul Dis ; 11(2): 315-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217607

RESUMO

Background: Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of muscle mass and muscle function. Previous work from our lab demonstrated that skeletal muscles from a mouse model of ALS show elevated intracellular calcium (Ca2+) levels and heightened endoplasmic reticulum (ER) stress. Objective: To investigate whether overexpression of sarcoplasmic reticulum (SR) Ca2+ ATPase 1 (SERCA1) in skeletal muscle would improve intracellular Ca2+ handling, attenuate ER stress, and improve motor function ALS transgenic mice. Methods: B6SJL-Tg (SOD1*G93A)1Gur/J (ALS-Tg) mice were bred with skeletal muscle α-actinin SERCA1 overexpressing mice to generate wild type (WT), SERCA1 overexpression (WT/+SERCA1), ALS-Tg, and SERCA1 overexpressing ALS-Tg (ALS-Tg/+SERCA1) mice. Motor function (grip test) was assessed weekly and skeletal muscles were harvested at 16 weeks of age to evaluate muscle mass, SR-Ca2+ ATPase activity, levels of SERCA1 and ER stress proteins - protein disulfide isomerase (PDI), Grp78/BiP, and C/EBP homologous protein (CHOP). Single muscle fibers were also isolated from the flexor digitorum brevis muscle to assess changes in resting and peak Fura-2 ratios. Results: ALS-Tg/+SERCA1 mice showed improved motor function, delayed onset of disease, and improved muscle mass compared to ALS-Tg. Further, ALS-Tg/+SERCA1 mice returned levels of SERCA1 protein and SR-Ca2+ ATPase activity back to levels in WT mice. Unexpectedly, SERCA-1 overexpression increased levels of the ER stress maker Grp78/BiP in both WT and ALS-Tg mice, while not altering protein levels of PDI or CHOP. Lastly, single muscle fibers from ALS-Tg/+SERCA1 had similar resting but lower peak Fura-2 levels (at 30 Hz and 100 Hz) compared to ALS-Tg mice. Conclusions: These data indicate that SERCA1 overexpression attenuates the progressive loss of muscle mass and maintains motor function in ALS-Tg mice while not lowering resting Ca2+ levels or ER stress.


Assuntos
Esclerose Amiotrófica Lateral , Camundongos , Animais , Chaperona BiP do Retículo Endoplasmático , Cálcio/metabolismo , Fura-2/metabolismo , Músculo Esquelético , Camundongos Transgênicos , Atrofia Muscular/metabolismo , ATPases Transportadoras de Cálcio/metabolismo
3.
Methods Mol Biol ; 2766: 177-182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38270878

RESUMO

The Ca2+ ion is an important second messenger in lymphocytes, similarly to its function in other mammalian cells. The generation of long-lasting intracellular Ca2+ elevations is essential for Ca2+-dependent gene transcription, proliferation, differentiation, and cytokine production in lymphocytes. Since store-operated Ca2+ entry (SOCE) is considered the predominant mode of Ca2+ influx in lymphocytes, the activation and function of lymphocytes can be generally predicted by monitoring SOCE. A method suitable for dynamic monitoring of Ca2+ influx using fura-2 labeling in lymphocytes is introduced in this chapter. Using this technique, large-scale screening of the activation status of primary or cultured lymphocytes can be realized.


Assuntos
Linfócitos , Sistemas do Segundo Mensageiro , Animais , Diferenciação Celular , Fura-2 , Mamíferos
4.
Cardiovasc Res ; 120(1): 44-55, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37890099

RESUMO

AIMS: CRISPR/Cas9 gene edits of cardiac ryanodine receptor (RyR2) in human-induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) provide a novel platform for introducing mutations in RyR2 Ca2+-binding residues and examining the resulting excitation contraction (EC)-coupling remodelling consequences. METHODS AND RESULTS: Ca2+-signalling phenotypes of mutations in RyR2 Ca2+-binding site residues associated with cardiac arrhythmia (RyR2-Q3925E) or not proven to cause cardiac pathology (RyR2-E3848A) were determined using ICa- and caffeine-triggered Ca2+ releases in voltage-clamped and total internal reflection fluorescence-imaged wild type and mutant cardiomyocytes infected with sarcoplasmic reticulum (SR)-targeted ER-GCaMP6 probe. (i) ICa- and caffeine-triggered Fura-2 or ER-GCaMP6 signals were suppressed, even when ICa was significantly enhanced in Q3925E and E3848A mutant cardiomyocytes; (ii) spontaneous beating (Fura-2 Ca2+ transients) persisted in mutant cells without the SR-release signals; (iii) while 5-20 mM caffeine failed to trigger Ca2+-release in voltage-clamped mutant cells, only ∼20% to ∼70% of intact myocytes responded respectively to caffeine; (iv) and 20 mM caffeine transients, however, activated slowly, were delayed, and variably suppressed by 2-APB, FCCP, or ruthenium red. CONCLUSION: Mutating RyR2 Ca2+-binding residues, irrespective of their reported pathogenesis, suppressed both ICa- and caffeine-triggered Ca2+ releases, suggesting interaction between Ca2+- and caffeine-binding sites. Enhanced transmembrane calcium influx and remodelling of EC-coupling pathways may underlie the persistence of spontaneous beating in Ca2+-induced Ca2+ release-suppressed mutant myocytes.


Assuntos
Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Cafeína/farmacologia , Cafeína/metabolismo , Cálcio/metabolismo , Fura-2/metabolismo , Miócitos Cardíacos/metabolismo , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
Am J Physiol Cell Physiol ; 326(1): C95-C106, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982175

RESUMO

Mechanical loading is essential for maintaining bone health. Here, we aimed to investigate the role of ATP and ADP in the mechanotransduction of bone-resorptive osteoclasts. Single osteoclast in primary cultures from 10 to 12-wk-old mice was mechanically stimulated by a gentle touch with a micropipette. Changes in cytosolic free calcium [Ca2+]i were analyzed in Fura-2 loaded osteoclasts. The cell injury was assessed by analyzing the cellular Fura-2 loss and classified as severe or mild using k-means. Osteoclasts responded to mechanical stimuli with transient calcium elevation (primary responders) and transduced these signals to neighboring cells, which responded with delayed calcium elevations (secondary responders). Severely injured osteoclasts had higher calcium transients than mildly injured cells. Fluid shear stress similarly induced reversible cell injury in osteoclasts. Secondary responses were abolished by treatment with A-804598, a specific inhibitor of P2X7, but not suramin, a broad P2 receptor blocker. Osteoclasts responded to ATP and ADP with concentration-dependent changes in [Ca2+]i. We performed osteoclast micropipette stimulation in the presence of phosphoenolpyruvate and pyruvate kinase which converted all ADP in solution to ATP, or with hexokinase converting all ATP to ADP. Osteoclasts with mild membrane injury demonstrated similar calcium responses in ATP and ADP-rich environments. However, when the mechanotransductive signal to severe osteoclast injury was converted to ADP, the fraction of secondary responders and their [Ca2+]i amplitude was higher. This study suggests the importance of osteoclast mechanobiology and the role of ADP-mediated signaling in conditions of altered mechanical loading associated with bone loss.NEW & NOTEWORTHY Osteoclasts are rarely considered as cells that participate in mechanical signaling in bone. We show that osteoclasts are capable of sensing and transmitting mechanical signals to neighboring cells. Mechanical stimulation commonly induces minor repairable membrane injury in osteoclasts. ATP and especially ADP were found to play important roles in the mechanoresponsiveness of osteoclasts. This study highlights the importance of osteoclast mechanobiology especially in conditions of altered mechanical loading associated with bone loss, such as in microgravity.


Assuntos
Mecanotransdução Celular , Osteoclastos , Camundongos , Animais , Osteoclastos/metabolismo , Cálcio/metabolismo , Fura-2/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo
6.
Function (Oxf) ; 4(6): zqad047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841523

RESUMO

Dihydropyridines such as amlodipine are widely used as antihypertensive agents, being prescribed to ∼70 million Americans and >0.4 billion adults worldwide. Dihydropyridines block voltage-gated Ca2+ channels in resistance vessels, leading to vasodilation and a reduction in blood pressure. Various meta-analyses show that dihydropyridines are relatively safe and effective in reducing hypertension. The use of dihydropyridines has recently been called into question as these drugs appear to activate store-operated Ca2+ entry in fura-2-loaded nonexcitable cells, trigger vascular remodeling, and increase heart failure, leading to the questioning of their clinical use. Given that hypertension is the dominant "silent killer" across the globe affecting ∼1.13 billion people, removal of Ca2+ channel blockers as antihypertensive agents has major health implications. Here, we show that amlodipine has marked intrinsic fluorescence, which further increases considerably inside cells over an identical excitation spectrum as fura-2, confounding the ability to measure cytosolic Ca2+. Using longer wavelength Ca2+ indicators, we find that concentrations of Ca2+ channel blockers that match therapeutic levels in serum of patients do not activate store-operated Ca2+ entry. Antihypertensive Ca2+ channel blockers at pharmacological concentrations either have no effect on store-operated channels, activate them indirectly through store depletion or inhibit the channels. Importantly, a meta-analysis of published clinical trials and a prospective real-world analysis of patients prescribed single antihypertensive agents for 6 mo and followed up 1 yr later both show that dihydropyridines are not associated with increased heart failure or other cardiovascular disorders. Removal of dihydropyridines for treatment of hypertension cannot therefore be recommended.


Assuntos
Di-Hidropiridinas , Insuficiência Cardíaca , Hipertensão , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Anti-Hipertensivos/farmacologia , Fura-2 , Estudos Prospectivos , Cálcio/uso terapêutico , Anlodipino/farmacologia , Hipertensão/tratamento farmacológico , Di-Hidropiridinas/farmacologia , Insuficiência Cardíaca/tratamento farmacológico
7.
Am J Physiol Cell Physiol ; 324(3): C757-C768, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745528

RESUMO

Kidney organoids cultured on adherent matrices in the presence of superfusate flow generate vascular networks and exhibit more mature podocyte and tubular compartments compared with static controls (Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. Nat Methods 16: 255-262, 2019; Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Nature 526: 564-568, 2015.). However, their physiological function has yet to be systematically investigated. Here, we measured mechano-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in tubules isolated from organoids cultured for 21-64 days, microperfused in vitro or affixed to the base of a specimen chamber, and loaded with fura-2 to measure [Ca2+]i. A rapid >2.5-fold increase in [Ca2+]i from a baseline of 195.0 ± 22.1 nM (n = 9; P ≤ 0.001) was observed when microperfused tubules from organoids >40 days in culture were subjected to luminal flow. In contrast, no response was detected in tubules isolated from organoids <30 days in culture. Nonperfused tubules (41 days) subjected to a 10-fold increase in bath flow rate also exhibited a threefold increase in [Ca2+]i from baseline (P < 0.001). Mechanosensitive PIEZO1 channels contribute to the flow-induced [Ca2+]i response in mouse distal tubule (Carrisoza-Gaytan R, Dalghi MG, Apodaca GL, Kleyman TR, Satlin LM. The FASEB J 33: 824.25, 2019.). Immunodetectable apical and basolateral PIEZO1 was identified in tubular structures by 21 days in culture. Basolateral PIEZO1 appeared to be functional as basolateral exposure of nonperfused tubules to the PIEZO1 activator Yoda 1 increased [Ca2+]i (P ≤ 0.001) in segments from organoids cultured for >30 days, with peak [Ca2+]i increasing with advancing days in culture. These results are consistent with a maturational increase in number and/or activity of flow/stretch-sensitive Ca2+ channels, including PIEZO1, in tubules of static organoids in culture.


Assuntos
Sinalização do Cálcio , Cálcio , Túbulos Renais , Animais , Camundongos , Cálcio/metabolismo , Fura-2 , Canais Iônicos/metabolismo , Rim/metabolismo , Túbulos Renais/metabolismo
8.
Biochem Biophys Res Commun ; 643: 186-191, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621114

RESUMO

We investigated the effects of different lipids on the activity of the angiotensin II type 1 receptor (AT1R). As calcium plays a key role in the signaling of the AT1R, we used the calcium-sensitive fluorescence indicators fura-2 to detect intracellular calcium release upon stimulation with the agonist angiotensin II. At first sight, cells preincubated with Very low-density lipoprotein (VLDL) showed a reduced calcium release triggered by angiontensin II compared to untreated control. However, on closer examination, this result seemed to be an artifact. Incubation with VLDL reduced also the amount of intracellular fura-2, as measured by fluorescence in the isosbestic point. Additionally, the maximal obtainable ratio, obtained after complete saturation with calcium ions, was reduced in cells preincubated with VLDL. These findings rendered our initial results questionable. We report the results of our work and our suggestions regarding the experimental setup to contribute to the understanding of the interpretation of fura-2 measurements and to avoid erroneous conclusions.


Assuntos
Cálcio da Dieta , Cálcio , Fura-2 , Lipídeos
9.
Eur J Pharmacol ; 942: 175512, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36657655

RESUMO

BACKGROUND: and purpose: Phenazopyridine (PAP) is an over-the-counter drug widely used to provide symptomatic relief of bladder pain in conditions such as cystitis or bladder pain syndrome (BPS). Whereas the analgesic effect of PAP has been attributed to a local effect on the mucosa of the lower urinary tract (LUT), the molecular targets of PAP remain unknown. We investigated the effect of PAP on pain-related Transient Receptor Potential (TRP) channels expressed in sensory neurons that innervate the bladder wall. EXPERIMENTAL APPROACH: The effects of PAP on the relevant TRP channels (TRPV1, TRPA1, TRPM8, TRPM3) expressed in HEK293 or CHO cells was investigated using Fura-2-based calcium measurements and whole-cell patch-clamp recordings. Activity of PAP on TRPM8 was further analysed using Fura-2-based calcium imaging on sensory neurons isolated from lumbosacral dorsal root ganglia (DRG) of mice. KEY RESULTS: PAP rapidly and reversibly inhibits responses of TRPM8 expressed in HEK293 cells to cold and menthol, with IC50 values between 2 and 10 µM. It acts by shifting the voltage dependence of channel activation towards positive potentials, opposite to the effect of menthol. PAP also inhibits TRPM8-mediated, menthol-evoked calcium responses in lumbosacral DRG neurons. At a concentration of 10 µM, PAP did not significantly affect TRPA1, TRPV1, or TRPM3. CONCLUSION AND IMPLICATIONS: PAP inhibits TRPM8 in a concentration range consistent with PAP levels in the urine of treated patients. Since TRPM8 is expressed in bladder afferent neurons and upregulated in patients with painful bladder disorders, TRPM8 inhibition may underlie the analgesic activity of PAP.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Animais , Cricetinae , Humanos , Camundongos , Cálcio/metabolismo , Cricetulus , Fura-2/farmacologia , Gânglios Espinais/metabolismo , Células HEK293 , Mentol/farmacologia , Dor , Fenazopiridina/farmacologia , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1 , Bexiga Urinária/metabolismo
10.
Methods Mol Biol ; 2576: 119-131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152181

RESUMO

The transient receptor potential vanilloid 1 ion channel (TRPV1) is a ligand-gated nonselective calcium-permeant cation channel involved in the detection of a wide variety of chemical and physical noxious stimuli, ranging from exogenous and endogenous ligands to noxious heat (>42 °C) and low pH (pH < 5.2). Due to its central role in pain and hyperalgesia, TRPV1 is considered a relevant therapeutic target for the development of analgesic and anti-inflammatory drugs potentially useful to relieve chronic, neuropathic, and inflammatory pain and to treat disorders such as inflammatory bowel disease. In this view, the availability of in vitro assays for the screening of novel TRPV1 modulators is highly desirable. Since TRPV1 activation leads to an increase in the intracellular calcium (Ca2+) levels, the use of Ca2+ fluorescent indicators represent a valuable and sensitive tool for monitoring such intracellular changes. In this chapter, we describe methods for recording and monitoring Ca2+ signals through the fluorescent indicators Fluo-4 acetoxymethyl (AM) and Fura-2 AM in HEK-293 cells transfected with TRPV1 or other thermoTRP channels.


Assuntos
Canais de Potencial de Receptor Transitório , Analgésicos , Cálcio/metabolismo , Capsaicina , Cátions , Fluorescência , Fura-2 , Células HEK293 , Humanos , Ligantes , Dor/tratamento farmacológico , Canais de Cátion TRPV/fisiologia
11.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361659

RESUMO

Lens ion homeostasis depends on Na,K-ATPase and NKCC1. TRPV4 and TRPV1 channels, which are mechanosensitive, play important roles in mechanisms that regulate the activity of these transporters. Here, we examined another mechanosensitive channel, piezo1, which is also expressed in the lens. The purpose of the study was to examine piezo1 function. Recognizing that activation of TRPV4 and TRPV1 causes changes in lens ion transport mechanisms, we carried out studies to determine whether piezo1 activation changes either Na,K-ATPase-mediated or NKCC1-mediated ion transport. We also examined channel function of piezo1 by measuring calcium entry. Rb uptake was measured as an index of inwardly directed potassium transport by intact mouse lenses. Intracellular calcium concentration was measured in Fura-2 loaded cells by a ratiometric imaging technique. Piezo1 immunolocalization was most evident in the lens epithelium. Potassium (Rb) uptake was increased in intact lenses as well as in cultured lens epithelium exposed to Yoda1, a piezo1 agonist. The majority of Rb uptake is Na,K-ATPase-dependent, although there also is a significant NKCC-dependent component. In the presence of ouabain, an Na,K-ATPase inhibitor, Yoda1 did not increase Rb uptake. In contrast, Yoda1 increased Rb uptake to a similar degree in the presence or absence of 1 µM bumetanide, an NKCC inhibitor. The Rb uptake response to Yoda1 was inhibited by the selective piezo1 antagonist GsMTx4, and also by the nonselective antagonists ruthenium red and gadolinium. In parallel studies, Yoda1 was observed to increase cytoplasmic calcium concentration in cells loaded with Fura-2. The calcium response to Yoda1 was abolished by gadolinium or ruthenium red. The calcium and Rb uptake responses to Yoda1 were absent in calcium-free bathing solution, consistent with calcium entry when piezo1 is activated. Taken together, these findings point to stimulation of Na,K-ATPase, but not NKCC, when piezo1 is activated. Na,K-ATPase is the principal mechanism responsible for ion and water homeostasis in the lens. The functional role of lens piezo1 is a topic for further study.


Assuntos
ATPase Trocadora de Sódio-Potássio , Canais de Cátion TRPV , Camundongos , Animais , Canais de Cátion TRPV/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Rutênio Vermelho , Gadolínio , Fura-2 , Potássio/metabolismo , Sódio/metabolismo , Transporte de Íons , Canais Iônicos/metabolismo
12.
Cells ; 11(19)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230909

RESUMO

The CB1 cannabinoid receptor (CB1R) and extracellular calcium (eCa2+)-stimulated Calcium Sensing receptor (CaSR) can exert cellular signaling by modulating levels of intracellular calcium ([Ca2+]i). We investigated the mechanisms involved in the ([Ca2+]i) increase in N18TG2 neuroblastoma cells, which endogenously express both receptors. Changes in [Ca2+]i were measured in cells exposed to 0.25 or 2.5 mM eCa2+ by a ratiometric method (Fura-2 fluorescence) and expressed as the difference between baseline and peak responses (ΔF340/380). The increased ([Ca2+]i) in cells exposed to 2.5 mM eCa2+ was blocked by the CaSR antagonist, NPS2143, this inhibition was abrogated upon stimulation with WIN55212-2. WIN55212-2 increased [Ca2+]i at 0.25 and 2.5 mM eCa2+ by 700% and 350%, respectively, but this increase was not replicated by CP55940 or methyl-anandamide. The store-operated calcium entry (SOCE) blocker, MRS1845, attenuated the WIN55212-2-stimulated increase in [Ca2+]i at both levels of eCa2+. Simultaneous perfusion with the CB1 antagonist, SR141716 or NPS2143 decreased the response to WIN55212-2 at 0.25 mM but not 2.5 mM eCa2+. Co-perfusion with the non-CB1/CB2 antagonist O-1918 attenuated the WIN55212-2-stimulated [Ca2+]i increase at both eCa2+ levels. These results are consistent with WIN55212-2-mediated intracellular Ca2+ mobilization from store-operated calcium channel-filled sources that could occur via either the CB1R or an O-1918-sensitive non-CB1R in coordination with the CaSR. Intracellular pathway crosstalk or signaling protein complexes may explain the observed effects.


Assuntos
Cálcio , Neuroblastoma , Receptor CB1 de Canabinoide/metabolismo , Benzoxazinas , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Fura-2 , Humanos , Morfolinas , Naftalenos , Receptores de Detecção de Cálcio/metabolismo , Receptores de Canabinoides/metabolismo , Rimonabanto
13.
Cells ; 11(19)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36231082

RESUMO

BACKGROUND: Platelets can support cancer progression via the release of microparticles and microvesicles that enhance the migratory behaviour of recipient cancer cells. We recently showed that platelet-derived extracellular vesicles (PEVs) stimulate migration and invasiveness in highly metastatic MDA-MB-231 cells by stimulating the phosphorylation of p38 MAPK and the myosin light chain 2 (MLC2). Herein, we assessed whether the pro-migratory effect of PEVs involves the remodelling of the Ca2+ handling machinery, which drives MDA-MB-231 cell motility. METHODS: PEVs were isolated from human blood platelets, and Fura-2/AM Ca2+ imaging, RT-qPCR, and immunoblotting were exploited to assess their effect on intracellular Ca2+ dynamics and Ca2+-dependent migratory processes in MDA-MB-231 cells. RESULTS: Pretreating MDA-MB-231 cells with PEVs for 24 h caused an increase in Ca2+ release from the endoplasmic reticulum (ER) due to the up-regulation of SERCA2B and InsP3R1/InsP3R2 mRNAs and proteins. The consequent enhancement of ER Ca2+ depletion led to a significant increase in store-operated Ca2+ entry. The larger Ca2+ mobilization from the ER was required to potentiate serum-induced migration by recruiting p38 MAPK and MLC2. CONCLUSIONS: PEVs stimulate migration in the highly metastatic MDA-MB-231 breast cancer cell line by inducing a partial remodelling of the Ca2+ handling machinery.


Assuntos
Neoplasias da Mama , Cálcio/metabolismo , Vesículas Extracelulares , Plaquetas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Feminino , Fura-2 , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Cardiovasc Diabetol ; 21(1): 197, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171554

RESUMO

BACKGROUND: Malignant ventricular arrhythmia (VA) is a major contributor to sudden cardiac death (SCD) in patients with pulmonary arterial hypertension (PAH)-induced right heart failure (RHF). Recently, dapagliflozin (DAPA), a sodium/glucose cotransporter-2 inhibitor (SGLT2i), has been found to exhibit cardioprotective effects in patients with left ventricular systolic dysfunction. In this study, we examined the effects of DAPA on VA vulnerability in a rat model of PAH-induced RHF. METHODS: Rats randomly received monocrotaline (MCT, 60 mg/kg) or vehicle via a single intraperitoneal injection. A day later, MCT-injected rats were randomly treated with placebo, low-dose DAPA (1 mg/kg/day), or high-dose (3 mg/kg/day) DAPA orally for 35 days. Echocardiographic analysis, haemodynamic experiments, and histological assessments were subsequently performed to confirm the presence of PAH-induced RHF. Right ventricle (RV) expression of calcium (Ca2+) handling proteins were detected via Western blotting. RV expression of connexin 43 (Cx43) was determined via immunohistochemical staining. An optical mapping study was performed to assess the electrophysiological characteristics in isolated hearts. Cellular Ca2+ imaging from RV cardiomyocytes (RVCMs) was recorded using Fura-2 AM or Fluo-4 AM. RESULTS: High-dose DAPA treatment attenuated RV structural remodelling, improved RV function, alleviated Cx43 remodelling, increased the conduction velocity, restored the expression of key Ca2+ handling proteins, increased the threshold for Ca2+ and action potential duration (APD) alternans, decreased susceptibility to spatially discordant APD alternans and spontaneous Ca2+ events, promoted cellular Ca2+ handling, and reduced VA vulnerability in PAH-induced RHF rats. Low-dose DAPA treatment also showed antiarrhythmic effects in hearts with PAH-induced RHF, although with a lower level of efficacy. CONCLUSION: DAPA administration reduced VA vulnerability in rats with PAH-induced RHF by improving RVCM Ca2+ handling.


Assuntos
Insuficiência Cardíaca , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Arritmias Cardíacas , Compostos Benzidrílicos , Cálcio/metabolismo , Conexina 43/metabolismo , Modelos Animais de Doenças , Fura-2 , Glucose , Glucosídeos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/prevenção & controle , Monocrotalina/toxicidade , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/tratamento farmacológico , Ratos , Sódio , Disfunção Ventricular Direita/tratamento farmacológico , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/prevenção & controle , Remodelação Ventricular
15.
Sci Rep ; 12(1): 16305, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175572

RESUMO

Many conjunctival inflammatory diseases differ between the sexes and altered conjunctival goblet cells (CGCs) response is often involved. Inflammation is initiated by the release of pro-inflammatory mediators and terminated by the biosynthesis of specialized pro-resolution mediators (SPMs). Herein, we determined the sex-based difference in the responses of CGCs to inflammatory stimuli or pro-resolving lipid SPMs and their interaction with sex hormones. GCs were cultured from pieces of human conjunctiva in RPMI media. CGCs were transferred 24 h before the start of experiments to phenol red-free and FBS-free media to minimize exogenous hormones. RT-PCR, immunofluorescence microscopy (IF), and Western Blot (WB) were performed to determine the presence of sex hormone receptors. Cellular response to pro-inflammatory stimuli or SPMs was studied by measuring the increase in intracellular [Ca2+] ([Ca2+]i) using fura 2/AM microscopy. Use of RT-PCR demonstrated estrogen receptor (ER) α in 4/5 males and 3/3 females; ERß in 2/4 males and 2/3 females; and androgen receptors (AR) in 3/3 male and 3/3 female CGCs. Positive immunoreactivity by IF and protein expression by WB was detected using antibodies for the ERα and ERß in 3/3 males and 3/3 females, while AR were only present in males. Significantly different Ca2+ responses between sexes were found with carbachol only at 10-3 M, but not with histamine or leukotriene (LT) B4 at any concentration used. Incubation with dihydrotestosterone (DHT), estrone (E1), or estradiol (E2) at 10-7 M for 30 min significantly inhibited the LTB4-stimulated [Ca2+]i increase in male and female CGCs. Incubation with DHT, E1, and E2 overnight significantly inhibited the LTB4 response in females, while DHT and E2 significantly inhibited the LTB4 response in males. The SPM lipoxin A4 (LXA4) (10-9-10-8 M), but not the resolvins D1 or D2, induced an [Ca2+]i increase that was significantly higher in males compared to females. We conclude that male and female CGCs showed differences in the expression of sex hormone receptors. Treatment with sex hormones altered pro-inflammatory mediator LTB4-induced response. Males compared to females have a higher response to the ω-6-fatty acid derived SPM LXA4, indicating males may terminate inflammation in conjunctival goblet cells faster than females.


Assuntos
Doenças da Túnica Conjuntiva , Lipoxinas , Carbacol , Túnica Conjuntiva , Di-Hidrotestosterona/farmacologia , Estradiol , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Estrona , Feminino , Fura-2 , Células Caliciformes , Histamina , Humanos , Leucotrienos , Masculino , Receptores Androgênicos , Receptores de Estrogênio
16.
Life Sci ; 308: 120913, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037871

RESUMO

AIMS: Lung type 2 alveolar cells, by secreting surfactant to lower surface tension, contribute to enhance lung compliance. Stretching, as a result of lung expansion, triggers type 1 alveolar cell to release ATP, which in turn stimulates Ca2+-dependent surfactant secretion by neighboring type 2 cells. In this report, we studied ATP-triggered Ca2+ signaling in human alveolar type 2 A549 cells. MAIN METHODS: Ca2+ signaling was examined using microfluorimetric measurement with fura-2 as fluorescent dye. KEY FINDINGS: Ca2+ oscillations triggered by ATP relied on inositol 1,4,5-trisphosphate-induced Ca2+ release and store-operated Ca2+ entry. Pathological conditions such as influenza virus infection and diabetes reportedly inhibit sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that a very mild inhibition of SERCA by cyclopiazonic acid (CPA) sufficed to decrease Ca2+ oscillation frequency and the percentage of cells exhibiting Ca2+ oscillations. Ochratoxin A (OTA), an activator of SERCA, could prevent the suppressive effects by CPA. Inhibition of SERCA by hydrogen peroxide also suppressed Ca2+ oscillations. Interestingly, hydrogen peroxide-induced inhibition was prevented by OTA but aggravated by CDN1163, an allosteric activator of SERCA. CDN1163 also had an untoward effect of releasing intracellular Ca2+. SIGNIFICANCE: Different modes of activation of SERCA may determine the outcome of rescue of Ca2+ oscillations in case of SERCA inhibition in alveolar type 2 cells.


Assuntos
Células Epiteliais Alveolares , Diabetes Mellitus Tipo 2 , Células A549 , Trifosfato de Adenosina/metabolismo , Células Epiteliais Alveolares/metabolismo , Aminoquinolinas , Benzamidas , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Corantes Fluorescentes , Fura-2/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Inositol 1,4,5-Trifosfato/farmacologia , Ocratoxinas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tensoativos
17.
J Appl Physiol (1985) ; 133(3): 663-675, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771221

RESUMO

Preload and afterload dictate the dynamics of the cyclical work-loop contraction that the heart undergoes in vivo. Cellular Ca2+ dynamics drive contraction, but the effects of afterload alone on the Ca2+ transient are inconclusive. To our knowledge, no study has investigated whether the putative afterload dependence of the Ca2+ transient is preload dependent. This study is designed to provide the first insight into the Ca2+ handling of cardiac trabeculae undergoing work-loop contractions, with the aim to examine whether the conflicting afterload dependency of the Ca2+ transient can be accounted for by considering preload under isometric and physiological work-loop contractions. Thus, we subjected ex vivo rat right-ventricular trabeculae, loaded with the fluorescent dye Fura-2, to work-loop contractions over a wide range of afterloads at two preloads while measuring stress, length changes, and Ca2+ transients. Work-loop control was implemented with a real-time Windkessel model to mimic the contraction patterns of the heart in vivo. We extracted a range of metrics from the measured steady-state twitch stress and Ca2+ transients, including the amplitudes, time courses, rates of rise, and integrals. Results show that parameters of stress were afterload and preload dependent. In contrast, the parameters associated with Ca2+ transients displayed a mixed dependence on afterload and preload. Most notably, its time course was afterload dependent, an effect augmented at the greater preload. This study reveals that the afterload dependence of cardiac Ca2+ transients is modulated by preload, which brings the study of Ca2+ transients during isometric contractions into question when aiming to understand physiological Ca2+ handling.NEW & NOTEWORTHY This study is the first examination of Ca2+ handling in trabeculae undergoing work-loop contractions. These data reveal that reducing preload diminishes the influence of afterload on the decay phase of the cardiac Ca2+ transient. This is significant as it reconciles inconsistencies in the literature regarding the influence of external loads on cardiac Ca2+ handling. Furthermore, these findings highlight discrepancies between Ca2+ handling during isometric and work-loop contractions in cardiac trabeculae operating at their optimal length.


Assuntos
Ventrículos do Coração , Coração , Animais , Fura-2 , Coração/fisiologia , Contração Miocárdica/fisiologia , Ratos
18.
Anal Chem ; 94(17): 6463-6472, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435669

RESUMO

Raman thermometry based on surface-enhanced Raman scattering has been developed using nanopipettes in cancer cell photothermal therapy (PTT). Gold nanorods (AuNRs) are robustly epoxied on glass pipettes with a high surface coverage of ∼95% and less than 10 nm-wide nanogaps for intracellular thermometry and photothermal cancer therapy. The temperature changes could be estimated from the N≡C band shifts of 4-fluorophenyl isocyanide (FPNC)-adsorbed AuNRs on the Raman thermometry nanopipette (RTN) surfaces. An intracellular temperature change of ∼2.7 °C produced by altering the [Ca2+] in A431 cells was detected using the RTN in vitro, as checked from fura-2 acetoxymethyl ester (fura-2 AM) fluorescence images. For in vivo experiments, local temperature rises of ∼19.2 °C were observed in the mouse skin, whereas infrared camera images could not tract due to spatial resolution. In addition, a tumor growth suppression was observed in the PTT processes after an administration of the three AuNR-coated nanopipettes combined with a 671 nm laser irradiation for 5 min in 30 days. These results demonstrate not only the localized temperature sensing ability of FPNC-tagged AuNR nanopipettes in cell biology but also anti-cancer effects in photothermal cancer therapy.


Assuntos
Nanotubos , Neoplasias , Termometria , Animais , Linhagem Celular Tumoral , Fura-2 , Ouro , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/terapia , Terapia Fototérmica
19.
Photochem Photobiol ; 98(5): 1215-1228, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35211987

RESUMO

Cholecystokinin 1 receptor (CCK1R) is activated photodynamically. For this to happen in situ, genetically encoded protein photosensitizers (GEPP) may be tagged to natively expressed CCK1R, but how to best tag GEPP has not been examined. Therefore, GEPP (miniSOG or KillerRed) was tagged to CCK1R and light-driven photodynamic CCK1R activation was monitored by Fura-2 fluorescent calcium imaging, to screen for optimized tagging patterns. Blue light-emitting diode irradiation of CHO-K1 cells expressing miniSOG fused to N- or C-terminus of CCK1R was found to both trigger persistent calcium oscillations-a hallmark of permanent photodynamic CCK1R activation. Photodynamic CCK1R activation was accomplished also with miniSOG fused to N-terminus of CCK1R via linker (GlySerGly)4 or 8 , but not linker (GSG)12 or an internal ribosomal entry site insert. KillerRed fused to N- or C-terminus of CCK1R after white light irradiation resulted in similar activation of in-frame CCK1R. Photodynamic CCK1R activation in miniSOG-CCK1R-CHO-K1 cells was blocked by singlet oxygen (1 O2 ) quencher uric acid or Trolox C, corroborating the role of 1 O2 as the reactive intermediate. It is concluded that photodynamic CCK1R activation can be achieved either with direct GEPP fusion to CCK1R or fusion via a short linker, fusion via long linkers might serve as the internal control.


Assuntos
Fármacos Fotossensibilizantes , Receptores da Colecistocinina , Cálcio , Colecistocinina , Fura-2 , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Proteínas , Receptores da Colecistocinina/genética , Receptores da Colecistocinina/metabolismo , Oxigênio Singlete/metabolismo , Ácido Úrico
20.
Mol Biochem Parasitol ; 244: 111394, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34216677

RESUMO

The Trypanosomatidae family encompasses many unicellular organisms responsible of several tropical diseases that affect humans and animals. Livestock tripanosomosis caused by Trypanosoma brucei brucei (T. brucei), Trypanosoma equiperdum (T. equiperdum) and Trypanosoma evansi (T. evansi), have a significant socio-economic impact and limit animal protein productivity throughout the intertropical zones of the world. Similarly, to all organisms, the maintenance of Ca2+ homeostasis is vital for these parasites, and the mechanism involved in the intracellular Ca2+ regulation have been widely described. However, the evidences related to the mechanisms responsible for the Ca2+ entry are scarce. Even more, to date the presence of a store-operated Ca2+ channel (SOC) has not been reported. Despite the apparent absence of Orai and STIM-like proteins in these parasites, in the present work we demonstrate the presence of a store-operated Ca2+-entry (SOCE) in T. equiperdum, using physiological techniques. This Ca2+-entry is induced by thapsigargin (TG) and 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ), and inhibited by 2-aminoethoxydiphenyl borate (2APB). Additionally, the use of bioinformatics techniques allowed us to identify putative transient receptor potential (TRP) channels, present in members of the Trypanozoon family, which would be possible candidates responsible for the SOCE described in the present work in T. equiperdum.


Assuntos
Cálcio/metabolismo , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Protozoários/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Trypanosoma/metabolismo , Animais , Compostos de Boro/farmacologia , Quelantes de Cálcio/química , Biologia Computacional/métodos , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Fura-2/química , Expressão Gênica , Homeostase/genética , Hidroquinonas/farmacologia , Proteínas Sensoras de Cálcio Intracelular/genética , Manganês/metabolismo , Proteínas de Protozoários/genética , Tapsigargina/farmacologia , Canais de Potencial de Receptor Transitório/genética , Trypanosoma/efeitos dos fármacos , Trypanosoma/genética , Tripanossomíase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...